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Abstract. The content of physical masses, mixing angles and CP violating phases in the lepton sector
of the extended standard model, both renormalizable and non-renormalizable, with arbitrary numbers of
singlet and left-handed doublet neutrinos is systematically analyzed in the weak basis.

1 Introduction

Quark mixing in the minimal standard model (SM) of
the strong and electroweak interactions is nowadays well
understood. It is described by the Cabibbo–Kobayashi–
Maskawa (CKM) unitary mixing matrix [1] for the quark
charged currents, the neutral ones and Yukawa interac-
tions being flavor conserving. As for the lepton sector, the
SM exhibits an extremely simple and economic structure.
It counts just three physical parameters, the charged lep-
ton masses, and predicts no flavor and CP violation. But
it has been widely recognized that the inclusion of the
(iso)singlet neutrinos and/or neutrino masses in the SM
would result in lepton mixing and flavor violation, with all
such related phenomena as neutrino oscillations [2], CP
violation, etc. (for a recent review see, e.g., [3]).

There are two principal differences between the lepton
and quark mixings. First, the number of singlet neutrinos
relative to that of the (iso)doublet ones is not restricted
by the chiral anomalies and hence can be arbitrary. Sec-
ond, Majorana masses for neutrinos are possible in ad-
dition to the Dirac ones. This inevitably complicates the
proper SM extensions and proliferates the free parameters.
Hence, the immediate problem arises of how to extract the
physical parameters, to separate the masses, mixing angles
and CP violating phases among them, as well as to con-
veniently parameterize the mixing matrices. There have
been many studies of these related topics. The case with
an arbitrary number of left-handed doublet neutrinos but
without singlet ones was considered in [4]; the case with
equal arbitrary numbers of singlet and doublet neutrinos
in [5], and the general case with arbitrary numbers of both
types of neutrinos in [6]. In particular, the last case with
only Dirac masses under the condition that the number
of singlet neutrinos is not higher than that of the doublet
ones was studied in [7]. Traditionally, these investigations
were carried out by an explicit construction in the mass
basis.

An alternative approach to parameter counting is also
feasible. It can be formulated in the weak basis entirely
through the symmetry properties of a model before its
spontaneous symmetry breaking [8]. As for the lepton sec-
tor, this approach was applied in [8] to the n family renor-
malizable SM with one right-handed neutrino per family.
In the present paper, it is extended to the general case. In
this way, all the possible parameter space configurations of
the SM with in addition arbitrary numbers of singlet and
left-handed doublet neutrinos are systematically analyzed.
Both renormalizable and non-renormalizable extensions of
the SM, among them the pure Dirac and pure Majorana
cases, are considered. In a consistent fashion, the known
results on lepton parameter counting are recovered, some
of them having been corrected. Moreover, new ones are
obtained. The relation between the weak and mass basis
countings is clarified. The results on parameter counting
for neutrino mixing are summarized in the tables.1

2 Renormalizable extensions

2.1 Arbitrary case

The most general renormalizable SU(2)W ×U(1)Y invari-
ant lepton Lagrangian of the SM including right-handed
neutrinos reads

L = lLiD/ lL + eRiD/ eR + νRi∂/νR

−
(
lLY

eeRφ+ lLY
ννRφ

C +
1
2
νC
L MνR + h.c.

)
. (1)

Here the lepton doublet lL and singlet eR, νR fields mean
those in a weak basis where, by definition, the symmetry

1 In fact, what we are talking about is lepton mixing which
is described by a counterpart of the CKM matrix. But one can
always choose a weak basis where the mixing matrix of charged
leptons is unity. In this sense, lepton mixing is synonymous
with neutrino mixing.
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Table 1. Parameter counting for the SM renormalizable extension (d, s)r
with d doublet neutrinos and s singlet ones. In this table and the ones
which follow, the first and the second groups of moduli for the physical
mass matrix Mph correspond to the independent mixing angles and masses,
respectively

Couplings Moduli Phases
and symmetries

Y e, Y ν , M d2 + ds + s(s + 1)/2 d2 + ds + s(s + 1)/2
G = U(d)2 × U(s) −d(d − 1) − s(s − 1)/2 −d(d + 1) − s(s + 1)/2
H = I 0 0
Mph(d, s)r sd + (d + s) d(s − 1)
Mph(n, n)r n2 + 2n n(n − 1)

properties are well stated. It is supposed that the ordi-
nary chiral families of the SM with the doublet left-handed
Weyl neutrinos with number d ≥ 3 are added by the sin-
glet Weyl neutrinos with number s ≥ 0. Let us designate
the SM extended in such a renormalizable manner as the
(d, s)r extension. A priori, one should retain s and d as
arbitrary integers, both s ≤ d and s > d being allowed. In
the present analysis, we omit possible vector-like lepton
doublets. Hence, taking in account the most probable ex-
clusion of the fourth heavy chiral family [9], one should ac-
tually put d = 3. Nevertheless, we retain d as a free param-
eter to better elucidate the parameter space structure of
the extended SM. Furthermore, D/ ≡ γαDα is the generic
covariant derivative which reduces to the ordinary one,
∂/ = γα∂α, for the hypercharge zero singlet neutrinos. Here
and in what follows, the notation νC

L ≡ (νR)C = CνR
T,

etc. is used for the particle–antiparticle conjugates of the
chiral fermions. Y e and Y ν are the arbitrary complex d×d
and d×s Yukawa matrices, respectively, andM is the com-
plex symmetric s × s matrix of the Majorana masses for
the singlet neutrinos. Finally, φ is the Higgs isodoublet
and φC ≡ iτ2φ∗ is its charge conjugate.

The parameter counting in the weak basis for the lep-
ton sector of the extended SM proceeds as is shown in
Table 1. Here G is the global symmetry of the kinetic part
of the Lagrangian (1). Due to the Dirac and Majorana
mass terms the symmetry G is explicitly violated so that
the residual symmetry is trivial, H = I. In what follows,
we generally assume that there are no mass textures or
that there is no accidental mass degeneracy. Otherwise,
the residual symmetry would increase, and special consid-
eration of each particular case would be mandatory. The
transformations of the broken part G/H (here G/H = G)
can be used to absorb the spurious parameters in (1),
leaving only the independent physical set, Mph, of them.
For this reason, parameters corresponding to the symme-
try G are represented in the tables with a minus sign,
whereas those of H are denoted with a plus sign. As a
result, Mph contains sd + d + s independent moduli and
d(s − 1) phases2. In all this, a real Mph corresponds to
CP conservation.

2 Note that our counting for the renormalizable (d, s)r ex-
tension, both at s ≤ d and s > d, disagrees with that in [6]
(see remarks in Sect. 4)

We should stress that the weak basis counting fixes
only the number of independent physical moduli (as well
as the phases), generally underestimating the number of
actual physical moduli. The reason is that, because of the
absence of the left-handed Majorana masses, there are re-
lations in the (d, s)r extension between the actual mixing
angles and masses. Considering all the masses as inde-
pendent ones while a part of the mixing angles is taken
as a function of the masses, would result in the superfi-
cial number of mixing angles being less than their actual
number. This may cause some confusion in an explicit
parametrization. So, it is more instructive to choose all
the mixing angles as independent ones, considering part
of the masses as a function of the angles and the rest of the
masses. To decide what is the minimal number of indepen-
dent masses, consider the limit M → ∞ corresponding to
decoupling of s heavy Majorana neutrinos. In this limit,
the rest of the d Majorana neutrinos should necessarily
become massless. Thus d Majorana masses depend on s
ones. Clearly, it is impossible to further reduce the number
of independent masses.

Finally, of the independent physical moduli, sd ones
are mixing angles, the rest being masses of d charged lep-
tons and s Majorana neutrinos. At 0 < s ≤ d, there addi-
tionally appear s induced Majorana masses, d− s neutri-
nos still remaining massless. This reflects the fact that in
this case the rank of the neutrino mass matrix is 2s. At
s > d > 0, all d + s Majorana neutrinos acquire masses.
We stress that in Table 1 and the tables which follow, the
number of physical masses chosen as independent ones is
collectively that for both the charged leptons and neutri-
nos (Majorana or Dirac, depending on the context). The
last line in Table 1 illustrates the extended n family SM
with one right-handed neutrino per family3. It is clear that
in contrast to the quark sector, the CP violation would
generally take place at more than one complete lepton
family.

In the SM-like case (d, 0)r one has G = U(d)2, all
the neutrinos are massless and the residual symmetry in-

3 As for division of the physical moduli into mixing angles
and masses, a superficial disagreement for this case with [8]
is caused by the fact that in that paper all the masses are
supposed to be independent ones, while we, as is stated above,
take as independent all the mixing angles
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Table 2. Parameter counting for the SM renormalizable extension (d, s)D with
only Dirac masses. The number of physical masses in Mph is that of the Dirac
ones

Couplings Moduli Phases
and symmetries

Y e, Y ν d2 + ds d2 + ds

G = U(d)2 × U(s) −d(d − 1) − s(s − 1)/2 −d(d + 1) − s(s + 1)/2
H = U(1), 0 < s ≤ d 0 1

H = U(s − d) × U(1) (s − d)(s − d − 1)/2 (s − d)(s − d + 1)/2 + 1
0 < d < s

Mph(d, s)D, 0 < s ≤ d s(2d − s − 1)/2 + (d + s) s(2d − s − 1)/2 − d + 1
Mph(d, s)D, 0 < d < s d(d − 1)/2 + 2d (d − 1)(d − 2)/2
Mph(n, n)D, n > 0 n(n − 1)/2 + 2n (n − 1)(n − 2)/2

creases up toH = U(1)d of the individual lepton numbers.
Hence both the number of mixing angles and that of the
phases are equal to zero, as it should be.

2.2 Only Dirac masses

There is an important case of SM extension which is renor-
malizable. Namely, the lepton number conservation would
forbid Majorana mass terms, both left- and right-handed
ones. In the absence of these masses the residual sym-
metry at 0 < s ≤ d would increase up to H = U(1)
of the total lepton number. In this case – designate it
(d, s)D – 2s in pairs degenerate Majorana neutrinos would
constitute s massive Dirac ones, the rest being massless.
Hence there would be s(2d − s − 1)/2 mixing angles and
s(2d− s− 1)/2− d+ 1 phases [7]. It follows in particular
that at s = d ≡ n for this reduced type of (n, n)r extension
one would get 2n masses, n(n − 1)/2 mixing angles and
(n− 1)(n− 2)/2 phases in complete analogy to the quark
sector.

The above results are not applicable at s > d > 0.
Here the number of massive Dirac neutrinos saturates the
maximum allowed value d, the rest of the s− d Weyl neu-
trinos being massless. Hence the residual symmetry would
increase up to H = U(s− d) × U(1), so that the number
of mixing angles would be d(d − 1)/2 and the number of
phases (d−1)(d−2)/2. The results are summarized in Ta-
ble 2 along with the case (n, n)D for n complete families.
It can be seen in particular that at fixed d the numbers of
mixing angles and phases do not increase with the growth
of s starting from s = d− 1.

3 Non-renormalizable extensions

3.1 Arbitrary case

Let us now generalize the preceding considerations to the
most exhaustive Dirac–Majorana case with left-handed
Majorana masses. The direct Majorana mass term for the
doublet neutrinos is excluded in the minimal SM by the

symmetry and renormalizability requirements. But in the
extended SM as a low energy effective theory, it could stem
from the SM invariant operator of the fifth dimension:

−∆L =
1
2Λ

(φC†τiφ)(lCRhiτ2τilL) + h.c., (2)

with τi, i = 1, 2, 3 being the Pauli matrices, h being a d×d
symmetric constant matrix, Λ 
 v being the lepton num-
ber violating mass scale (supposedly of the order of the
singlet Majorana masses) and v being the Higgs vacuum
expectation value. The above operator with the effective
isotriplet field ∆i = (1/Λ)(φC†τiφ) reflects the oblique ra-
diative corrections in the low energy Lagrangian produced
by the physics beyond the SM. In the unitary gauge, it
yields the following mass and Yukawa term:

−∆L =
1
2

(
1 +

H

v

)2

νC
Rµ νL + h.c., (3)

with µ = hv2/Λ. If the isotriplet ∆i were to be considered
as an elementary one in the framework of renormalizable
extensions, it would change only the emerging Yukawa
interactions, not affecting the mass and mixing matrices.

There is no non-trivial residual symmetry in this case
either, H = I. As for the free parameters, the phenomeno-
logical inclusion of such a mass term increases the numbers
of moduli and phases by d(d+1)/2 each. Of the extra mod-
uli, d ones are the Majorana neutrino masses, the rest be-
ing physical mixing angles. Hence, the extension amounts
to d + s independent neutrino masses, d(d + 2s − 1)/2
physical mixing angles and the same number of phases
[6]. Let us designate this general type of the SM exten-
sion as (d, s), whether s ≤ d or s > d. The parameter
counting for this non-renormalizable extension of the SM
is summarized in Table 3.

A special case without singlet neutrinos, i.e., the (d, 0)
extension, results in d(d−1)/2 mixing angles and the same
number of phases [4]. Clearly, the CP violation in the lep-
ton sector becomes possible for two or more families with-
out singlet neutrinos at all. On the other hand, the (n, n)
extension with n complete families brings in 2n massive
Majorana neutrinos with n(3n − 1)/2 mixing angles and
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Table 3. Parameter counting for the SM non-renormalizable extension
(d, s) with d doublet and s singlet neutrinos. The symmetries are the
same as in Table 1

Couplings Moduli Phases

Y e, Y ν , M d2 + ds + s(s + 1)/2 d2 + ds + s(s + 1)/2
µ +d(d + 1)/2 +d(d + 1)/2

Mph(d, s) d(d + 2s − 1)/2 + (2d + s) d(d + 2s − 1)/2
Mph(n, n) n(3n − 1)/2 + 3n n(3n − 1)/2

Table 4. Parameter counting for the SM extension (d, s)M with only Majorana
masses for the neutrinos. The symmetries are the same as in Table 1

Couplings Moduli Phases

Y e, µ, M d2 + d(d + 1)/2 + s(s + 1)/2 d2 + d(d + 1)/2 + s(s + 1)/2
Mph(d, s)M d(d − 1)/2 + (2d + s) d(d − 1)/2

an equal number of phases [5]. Hence, CP violation might
take place here already for one complete family.

3.2 Only Majorana masses

Let us consider a peculiar case of the general extension
above. In the absence of Yukawa couplings, Y ν ≡ 0, but
at non-zero Majorana masses, both left- and right-handed,
the residual symmetry is still trivial (H = I) as in the gen-
eral case. But now the doublet and singlet neutrino sec-
tors completely disentangle from each other. All the d+ s
Majorana neutrinos acquire masses, and we end up with
d(d− 1)/2 mixing angles and the same number of phases
for the doublet neutrinos, without any mixing for the sin-
glet ones, whether s ≤ d or s > d. Let us designate this
case (d, s)M. The results are collected in Table 4. We stress
that the numbers of physical mixing angles and phases do
not here depend on s. This is because the right-handed
neutrinos are sterile in the case at hand, and their mixing
matrix can be chosen to be unity on neglecting any other
interactions. As for doublet neutrinos, this case formally
corresponds to that (d, 0)M, which in turn coincides with
the general one, (d, 0).

4 Remarks

We would like to clarify some discrepancies for the renor-
malizable (d, s)r extension between our counting in the
weak basis and the one in the mass basis [6]. In the mass
basis, an explicit new feature of the (d, s)r extension, com-
pared to the (d, s) one, is the appearance of the additional
symmetry U(d − s), d ≥ s, due to d − s neutrinos being
massless. As a result, it is stated in the paper referred to
that the mixing matrix for the (d, s)r extension could be
obtained from the corresponding general matrix just by
deleting in the latter (d − s)2 spurious parameters corre-
sponding to U(d − s). We would like to remark that this

procedure is not sufficient to fix the number of indepen-
dent moduli, and it generally overestimates the number of
actual ones.

To illustrate this point, we note that it would follow
from the prescription [6], e.g., that at d = s ≡ n both
(n, n)r and (n, n) extensions would have the same num-
bers of mixing angles, as well as phases, n(3n − 1)/2, in
addition to 3n masses. On the other hand, an arbitrary
square complex matrix Y can be uniquely written as a
unitary matrix times a positive-definite Hermitian one,
and a complex symmetric matrix M can be uniquely de-
composed in terms of a unitary matrix V and a positive-
definite diagonal one, M = V TMdiagV . This means that
taking into account the global symmetry G we could start
in the (n, n)r extension by choosing from the very begin-
ning the Yukawa matrices Y e and Y ν as positive-definite
Hermitian matrices and M as a positive-definite diagonal
one. As we have thus exhausted the whole symmetry G
and there is no non-trivial residual subgroup H, this set
of parameters is the independent physical one. It contains
n(n+1)+n moduli and n(n− 1) phases. This completely
agrees with Table 1 and is clearly less compared to [6].

We trace the origin of the discrepancy between the
countings to the constraint µ = 0 in (3). In passing from
the (d, s) extension to the (d, s)r one, it restricts d(d+1)/2
phases and the same number of physical moduli. In this,
d of the conditions on the moduli can serve to determine
d induced Majorana masses in terms of the mixing angles.
Altogether, this leaves s independent Majorana masses,
sd mixing angles and d(s− 1) phases. At 0 < s ≤ d, there
are s induced non-zero masses, d − s neutrinos necessar-
ily remaining massless. As a consequence of the inborn
masslessness for d− s neutrinos, the stated constraint su-
persedes here those gained from the U(d − s) symmetry.
E.g., according to the prescription [6] the extension (d, 1)r
should superficially correspond to 2d−1 mixing angles and
d phases, but an explicit construction shows that there are
actually just d mixing angles, all of them being indepen-
dent, and no phases at all. Especially clearly the above
constraint works at s > d when there appear no massless
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neutrinos and there is nothing to delete by the related
transformations. Nevertheless, the counting of parameters
at s > d for the (d, s)r extension proves to be not the same
as for the (d, s) one.

5 Conclusion

The parameter counting in the weak basis is complemen-
tary to that in the mass basis. It allows one to gain clear
insight into the independent physical parameter content
of the SM extensions, both renormalizable and non-renor-
malizable, with arbitrary numbers of the singlet and left-
handed doublet neutrinos.
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